Skip to content

Commit

Permalink
mm/gup.c: update the documentation
Browse files Browse the repository at this point in the history
This patch is an attempt to update the documentation.

 - Add/ remove extra * based on type of function static/global.

 - Add description for functions and their input arguments.

[[email protected]: s@/*@/**@]
Signed-off-by: Souptick Joarder <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Andrew Morton <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
  • Loading branch information
Souptick Joarder authored and torvalds committed Jun 2, 2020
1 parent 8d92890 commit adc8cb4
Showing 1 changed file with 39 additions and 18 deletions.
57 changes: 39 additions & 18 deletions mm/gup.c
Original file line number Diff line number Diff line change
Expand Up @@ -1168,7 +1168,7 @@ static bool vma_permits_fault(struct vm_area_struct *vma,
return true;
}

/*
/**
* fixup_user_fault() - manually resolve a user page fault
* @tsk: the task_struct to use for page fault accounting, or
* NULL if faults are not to be recorded.
Expand Down Expand Up @@ -1839,7 +1839,7 @@ static long __get_user_pages_remote(struct task_struct *tsk,
gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

/*
/**
* get_user_pages_remote() - pin user pages in memory
* @tsk: the task_struct to use for page fault accounting, or
* NULL if faults are not to be recorded.
Expand Down Expand Up @@ -1870,13 +1870,13 @@ static long __get_user_pages_remote(struct task_struct *tsk,
*
* Must be called with mmap_sem held for read or write.
*
* get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* get_user_pages_remote walks a process's page tables and takes a reference
* to each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* get_user_pages returns, and there may even be a completely different
* get_user_pages_remote returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
Expand All @@ -1888,17 +1888,17 @@ static long __get_user_pages_remote(struct task_struct *tsk,
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
* be called after the page is finished with, and before put_page is called.
*
* get_user_pages is typically used for fewer-copy IO operations, to get a
* handle on the memory by some means other than accesses via the user virtual
* addresses. The pages may be submitted for DMA to devices or accessed via
* their kernel linear mapping (via the kmap APIs). Care should be taken to
* use the correct cache flushing APIs.
* get_user_pages_remote is typically used for fewer-copy IO operations,
* to get a handle on the memory by some means other than accesses
* via the user virtual addresses. The pages may be submitted for
* DMA to devices or accessed via their kernel linear mapping (via the
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
*
* See also get_user_pages_fast, for performance critical applications.
*
* get_user_pages should be phased out in favor of
* get_user_pages_remote should be phased out in favor of
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
* should use get_user_pages because it cannot pass
* should use get_user_pages_remote because it cannot pass
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
*/
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
Expand Down Expand Up @@ -1937,7 +1937,17 @@ static long __get_user_pages_remote(struct task_struct *tsk,
}
#endif /* !CONFIG_MMU */

/*
/**
* get_user_pages() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
*
* This is the same as get_user_pages_remote(), just with a
* less-flexible calling convention where we assume that the task
* and mm being operated on are the current task's and don't allow
Expand All @@ -1960,11 +1970,7 @@ long get_user_pages(unsigned long start, unsigned long nr_pages,
}
EXPORT_SYMBOL(get_user_pages);

/*
* We can leverage the VM_FAULT_RETRY functionality in the page fault
* paths better by using either get_user_pages_locked() or
* get_user_pages_unlocked().
*
/**
* get_user_pages_locked() is suitable to replace the form:
*
* down_read(&mm->mmap_sem);
Expand All @@ -1980,6 +1986,21 @@ EXPORT_SYMBOL(get_user_pages);
* get_user_pages_locked(tsk, mm, ..., pages, &locked);
* if (locked)
* up_read(&mm->mmap_sem);
*
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* We can leverage the VM_FAULT_RETRY functionality in the page fault
* paths better by using either get_user_pages_locked() or
* get_user_pages_unlocked().
*
*/
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
Expand Down

0 comments on commit adc8cb4

Please sign in to comment.