Skip to content

Commit

Permalink
Implement Branch and Bound coin selection in a new file
Browse files Browse the repository at this point in the history
Create a new file for coin selection logic and implement the BnB algorithm in it.
  • Loading branch information
achow101 committed Mar 13, 2018
1 parent f84fed8 commit 0185939
Show file tree
Hide file tree
Showing 5 changed files with 184 additions and 0 deletions.
2 changes: 2 additions & 0 deletions src/Makefile.am
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,7 @@ BITCOIN_CORE_H = \
wallet/wallet.h \
wallet/walletdb.h \
wallet/walletutil.h \
wallet/coinselection.h \
warnings.h \
zmq/zmqabstractnotifier.h \
zmq/zmqconfig.h\
Expand Down Expand Up @@ -253,6 +254,7 @@ libbitcoin_wallet_a_SOURCES = \
wallet/wallet.cpp \
wallet/walletdb.cpp \
wallet/walletutil.cpp \
wallet/coinselection.cpp \
$(BITCOIN_CORE_H)

# crypto primitives library
Expand Down
165 changes: 165 additions & 0 deletions src/wallet/coinselection.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
// Copyright (c) 2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <wallet/coinselection.h>
#include <util.h>
#include <utilmoneystr.h>

// Descending order comparator
struct {
bool operator()(const CInputCoin& a, const CInputCoin& b) const
{
return a.effective_value > b.effective_value;
}
} descending;

/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
* are sorted by their effective values and the trees is explored deterministically per the inclusion
* branch first. At each node, the algorithm checks whether the selection is within the target range.
* While the selection has not reached the target range, more UTXOs are included. When a selection's
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
*
* The search continues to search for better solutions after one solution has been found. The best
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs, plus the amount the selection exceeds the spending target:
*
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
*
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor.
*
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
* values are their effective values.
* @param const CAmount& target_value This is the value that we want to select. It is the lower
* bound of the range.
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
* This plus target_value is the upper bound of the range.
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
* that have been selected.
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
* that were selected.
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
* overhead (version, locktime, marker and flag)
*/

static const size_t TOTAL_TRIES = 100000;

bool SelectCoinsBnB(std::vector<CInputCoin>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
{
out_set.clear();
CAmount curr_value = 0;

std::vector<bool> curr_selection; // select the utxo at this index
curr_selection.reserve(utxo_pool.size());
CAmount actual_target = not_input_fees + target_value;

// Calculate curr_available_value
CAmount curr_available_value = 0;
for (const CInputCoin& utxo : utxo_pool) {
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
assert(utxo.effective_value > 0);
curr_available_value += utxo.effective_value;
}
if (curr_available_value < actual_target) {
return false;
}

// Sort the utxo_pool
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);

CAmount curr_waste = 0;
std::vector<bool> best_selection;
CAmount best_waste = MAX_MONEY;

// Depth First search loop for choosing the UTXOs
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
// Conditions for starting a backtrack
bool backtrack = false;
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true;
} else if (curr_value >= actual_target) { // Selected value is within range
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if (curr_waste <= best_waste) {
best_selection = curr_selection;
best_selection.resize(utxo_pool.size());
best_waste = curr_waste;
}
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
backtrack = true;
}

// Backtracking, moving backwards
if (backtrack) {
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
while (!curr_selection.empty() && !curr_selection.back()) {
curr_selection.pop_back();
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
};

if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break;
}

// Output was included on previous iterations, try excluding now.
curr_selection.back() = false;
CInputCoin& utxo = utxo_pool.at(curr_selection.size() - 1);
curr_value -= utxo.effective_value;
curr_waste -= utxo.fee - utxo.long_term_fee;
} else { // Moving forwards, continuing down this branch
CInputCoin& utxo = utxo_pool.at(curr_selection.size());

// Remove this utxo from the curr_available_value utxo amount
curr_available_value -= utxo.effective_value;

// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
if (!curr_selection.empty() && !curr_selection.back() &&
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
curr_selection.push_back(false);
} else {
// Inclusion branch first (Largest First Exploration)
curr_selection.push_back(true);
curr_value += utxo.effective_value;
curr_waste += utxo.fee - utxo.long_term_fee;
}
}
}

// Check for solution
if (best_selection.empty()) {
return false;
}

// Set output set
value_ret = 0;
for (size_t i = 0; i < best_selection.size(); ++i) {
if (best_selection.at(i)) {
out_set.insert(utxo_pool.at(i));
value_ret += utxo_pool.at(i).txout.nValue;
}
}

return true;
}
15 changes: 15 additions & 0 deletions src/wallet/coinselection.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
// Copyright (c) 2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_COINSELECTION_H
#define BITCOIN_COINSELECTION_H

#include <amount.h>
#include <primitives/transaction.h>
#include <random.h>
#include <wallet/wallet.h>

bool SelectCoinsBnB(std::vector<CInputCoin>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees);

#endif // BITCOIN_COINSELECTION_H
1 change: 1 addition & 0 deletions src/wallet/wallet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#include <checkpoints.h>
#include <chain.h>
#include <wallet/coincontrol.h>
#include <wallet/coinselection.h>
#include <consensus/consensus.h>
#include <consensus/validation.h>
#include <fs.h>
Expand Down
1 change: 1 addition & 0 deletions src/wallet/wallet.h
Original file line number Diff line number Diff line change
Expand Up @@ -509,6 +509,7 @@ class CInputCoin {

outpoint = COutPoint(walletTx->GetHash(), i);
txout = walletTx->tx->vout[i];
effective_value = txout.nValue;
}

COutPoint outpoint;
Expand Down

0 comments on commit 0185939

Please sign in to comment.