Skip to content

Commit

Permalink
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/li…
Browse files Browse the repository at this point in the history
…nux/kernel/git/tip/tip

Pull perf events changes for v3.4 from Ingo Molnar:

 - New "hardware based branch profiling" feature both on the kernel and
   the tooling side, on CPUs that support it.  (modern x86 Intel CPUs
   with the 'LBR' hardware feature currently.)

   This new feature is basically a sophisticated 'magnifying glass' for
   branch execution - something that is pretty difficult to extract from
   regular, function histogram centric profiles.

   The simplest mode is activated via 'perf record -b', and the result
   looks like this in perf report:

	$ perf record -b any_call,u -e cycles:u branchy

	$ perf report -b --sort=symbol
	    52.34%  [.] main                   [.] f1
	    24.04%  [.] f1                     [.] f3
	    23.60%  [.] f1                     [.] f2
	     0.01%  [k] _IO_new_file_xsputn    [k] _IO_file_overflow
	     0.01%  [k] _IO_vfprintf_internal  [k] _IO_new_file_xsputn
	     0.01%  [k] _IO_vfprintf_internal  [k] strchrnul
	     0.01%  [k] __printf               [k] _IO_vfprintf_internal
	     0.01%  [k] main                   [k] __printf

   This output shows from/to branch columns and shows the highest
   percentage (from,to) jump combinations - i.e.  the most likely taken
   branches in the system.  "branches" can also include function calls
   and any other synchronous and asynchronous transitions of the
   instruction pointer that are not 'next instruction' - such as system
   calls, traps, interrupts, etc.

   This feature comes with (hopefully intuitive) flat ascii and TUI
   support in perf report.

 - Various 'perf annotate' visual improvements for us assembly junkies.
   It will now recognize function calls in the TUI and by hitting enter
   you can follow the call (recursively) and back, amongst other
   improvements.

 - Multiple threads/processes recording support in perf record, perf
   stat, perf top - which is activated via a comma-list of PIDs:

	perf top -p 21483,21485
	perf stat -p 21483,21485 -ddd
	perf record -p 21483,21485

 - Support for per UID views, via the --uid paramter to perf top, perf
   report, etc.  For example 'perf top --uid mingo' will only show the
   tasks that I am running, excluding other users, root, etc.

 - Jump label restructurings and improvements - this includes the
   factoring out of the (hopefully much clearer) include/linux/static_key.h
   generic facility:

	struct static_key key = STATIC_KEY_INIT_FALSE;

	...

	if (static_key_false(&key))
	        do unlikely code
	else
	        do likely code

	...
	static_key_slow_inc();
	...
	static_key_slow_inc();
	...

   The static_key_false() branch will be generated into the code with as
   little impact to the likely code path as possible.  the
   static_key_slow_*() APIs flip the branch via live kernel code patching.

   This facility can now be used more widely within the kernel to
   micro-optimize hot branches whose likelihood matches the static-key
   usage and fast/slow cost patterns.

 - SW function tracer improvements: perf support and filtering support.

 - Various hardenings of the perf.data ABI, to make older perf.data's
   smoother on newer tool versions, to make new features integrate more
   smoothly, to support cross-endian recording/analyzing workflows
   better, etc.

 - Restructuring of the kprobes code, the splitting out of 'optprobes',
   and a corner case bugfix.

 - Allow the tracing of kernel console output (printk).

 - Improvements/fixes to user-space RDPMC support, allowing user-space
   self-profiling code to extract PMU counts without performing any
   system calls, while playing nice with the kernel side.

 - 'perf bench' improvements

 - ... and lots of internal restructurings, cleanups and fixes that made
   these features possible.  And, as usual this list is incomplete as
   there were also lots of other improvements

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (120 commits)
  perf report: Fix annotate double quit issue in branch view mode
  perf report: Remove duplicate annotate choice in branch view mode
  perf/x86: Prettify pmu config literals
  perf report: Enable TUI in branch view mode
  perf report: Auto-detect branch stack sampling mode
  perf record: Add HEADER_BRANCH_STACK tag
  perf record: Provide default branch stack sampling mode option
  perf tools: Make perf able to read files from older ABIs
  perf tools: Fix ABI compatibility bug in print_event_desc()
  perf tools: Enable reading of perf.data files from different ABI rev
  perf: Add ABI reference sizes
  perf report: Add support for taken branch sampling
  perf record: Add support for sampling taken branch
  perf tools: Add code to support PERF_SAMPLE_BRANCH_STACK
  x86/kprobes: Split out optprobe related code to kprobes-opt.c
  x86/kprobes: Fix a bug which can modify kernel code permanently
  x86/kprobes: Fix instruction recovery on optimized path
  perf: Add callback to flush branch_stack on context switch
  perf: Disable PERF_SAMPLE_BRANCH_* when not supported
  perf/x86: Add LBR software filter support for Intel CPUs
  ...
  • Loading branch information
torvalds committed Mar 20, 2012
2 parents 0bbfcaf + bea95c1 commit 9c2b957
Show file tree
Hide file tree
Showing 165 changed files with 6,107 additions and 1,984 deletions.
63 changes: 63 additions & 0 deletions Documentation/lockup-watchdogs.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
===============================================================
Softlockup detector and hardlockup detector (aka nmi_watchdog)
===============================================================

The Linux kernel can act as a watchdog to detect both soft and hard
lockups.

A 'softlockup' is defined as a bug that causes the kernel to loop in
kernel mode for more than 20 seconds (see "Implementation" below for
details), without giving other tasks a chance to run. The current
stack trace is displayed upon detection and, by default, the system
will stay locked up. Alternatively, the kernel can be configured to
panic; a sysctl, "kernel.softlockup_panic", a kernel parameter,
"softlockup_panic" (see "Documentation/kernel-parameters.txt" for
details), and a compile option, "BOOTPARAM_HARDLOCKUP_PANIC", are
provided for this.

A 'hardlockup' is defined as a bug that causes the CPU to loop in
kernel mode for more than 10 seconds (see "Implementation" below for
details), without letting other interrupts have a chance to run.
Similarly to the softlockup case, the current stack trace is displayed
upon detection and the system will stay locked up unless the default
behavior is changed, which can be done through a compile time knob,
"BOOTPARAM_HARDLOCKUP_PANIC", and a kernel parameter, "nmi_watchdog"
(see "Documentation/kernel-parameters.txt" for details).

The panic option can be used in combination with panic_timeout (this
timeout is set through the confusingly named "kernel.panic" sysctl),
to cause the system to reboot automatically after a specified amount
of time.

=== Implementation ===

The soft and hard lockup detectors are built on top of the hrtimer and
perf subsystems, respectively. A direct consequence of this is that,
in principle, they should work in any architecture where these
subsystems are present.

A periodic hrtimer runs to generate interrupts and kick the watchdog
task. An NMI perf event is generated every "watchdog_thresh"
(compile-time initialized to 10 and configurable through sysctl of the
same name) seconds to check for hardlockups. If any CPU in the system
does not receive any hrtimer interrupt during that time the
'hardlockup detector' (the handler for the NMI perf event) will
generate a kernel warning or call panic, depending on the
configuration.

The watchdog task is a high priority kernel thread that updates a
timestamp every time it is scheduled. If that timestamp is not updated
for 2*watchdog_thresh seconds (the softlockup threshold) the
'softlockup detector' (coded inside the hrtimer callback function)
will dump useful debug information to the system log, after which it
will call panic if it was instructed to do so or resume execution of
other kernel code.

The period of the hrtimer is 2*watchdog_thresh/5, which means it has
two or three chances to generate an interrupt before the hardlockup
detector kicks in.

As explained above, a kernel knob is provided that allows
administrators to configure the period of the hrtimer and the perf
event. The right value for a particular environment is a trade-off
between fast response to lockups and detection overhead.
83 changes: 0 additions & 83 deletions Documentation/nmi_watchdog.txt

This file was deleted.

Loading

0 comments on commit 9c2b957

Please sign in to comment.