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1 Introduction

Calyx is an intermediate language for compiling high-level descriptions of hard-
ware accelerators into low-level hardware descriptions. It uses a split repre-
sentation that separates structural descriptions from control flow. However,
the current semantics of parallelism in Calyx, particularly the par construct,
present several challenges for analysis and optimization.

2 Problems with Current Par Semantics

The main issues with the current par semantics in Calyx are:

1. Undefined behavior for data races

2. Non-determinism in execution order

3. Lack of formal semantics for parallel constructs

4. Difficulty in expressing complex parallel patterns

5. Compilation challenges in preserving parallelism

6. Inaccurate dataflow analysis, particularly for liveness

3 The Par CFG Problem

Traditional control flow graphs (CFGs) and dataflow analyses are not well-suited
for handling parallel execution, which is a key feature of Calyx’s par construct.
This leads to challenges in accurately representing and analyzing parallel code.
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3.1 Example

Consider the following Calyx code:

F ; // wr x
par {

A; // wr x
B;
C; // rd x

}
G; // rd x

The key question is: Is x alive between F and the beginning of par?

3.2 Challenges

1. Traditional CFGs assume sequential execution, but par allows simultane-
ous execution of multiple statements.

2. Simple union or intersection of liveness sets from parallel branches leads
to incorrect results.

3. Information flow between siblings in a par statement is complex and can
affect optimization opportunities.

3.3 Proposed Solution

To address these issues, Calyx proposes passing gen and kill sets along with
live sets. The liveness after a par block can be computed as:

(
⋃

live(children)−
⋃

kill(children)) ∪
⋃

gen(children)

This approach allows for more accurate liveness analysis in the presence of
parallel execution.

3.4 Implications

• In Calyx, we must consider x as live at B within the par block, as siblings
may interact arbitrarily.

• This conservative approach limits some optimization opportunities but
ensures correctness in the presence of potential inter-sibling interactions.

• The complexity of parallel dataflow analysis highlights the need for a more
robust formal framework, such as CKAT, to reason about parallel execu-
tion in Calyx.
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4 Standard Operators in Kleene Algebra with
Tests

Kleene Algebra with Tests (KAT) extends Kleene Algebra with boolean tests,
providing a powerful framework for reasoning about programs. The standard
operators in KAT and their significance for program analysis are as follows:

4.1 Basic Operators

• Addition (+):

– Represents alternative paths or nondeterministic choice.

– In CFGs: models branching or multiple execution paths.

– Example: a+ b means ”execute a or execute b”.

• Multiplication (·):

– Represents sequential composition.

– In CFGs: models the sequence of operations.

– Example: a · b means ”execute a then execute b”.

• Kleene star (∗):

– Represents iteration (zero or more times).

– In CFGs: models loops and repetition.

– Example: a∗ means ”execute a zero or more times”.

• Zero (0):

– Represents the empty set or failed computation.

– In analysis: often used to represent infeasible paths.

• One (1):

– Represents the empty string or identity function.

– In analysis: often used to represent a no-op or skip.

4.2 Test Operators

• Complementation (¬):

– Represents the negation of a test.

– In analysis: used to represent conditions and their negations.

– Example: If t tests for ”x > 0”, then ¬t tests for ”x ≤ 0”.

• Meet (⊓) and Join (⊔):

– Represent conjunction and disjunction of tests.

– In analysis: used to combine conditions.

– Example: t1 ⊓ t2 means ”both t1 and t2 hold”.

3



4.3 Importance in Program Analysis

These operators are crucial for program analysis for several reasons:

1. Expressiveness: They allow us to represent complex program structures
and behaviors in a concise algebraic form.

2. Compositionality: We can build representations of large programs by
composing smaller parts, mirroring the structure of the program itself.

3. Equational Reasoning: KAT provides a rich set of equational axioms
that allow us to manipulate and reason about program representations
algebraically.

4. Verification: We can use KAT to prove program equivalence and cor-
rectness properties.

5. Optimization: The algebraic framework allows us to justify program
transformations and optimizations formally.

4.4 Application to Calyx and Parallel Composition

In the context of Calyx and parallel composition, these operators allow us to:

• Represent sequential and parallel compositions of program fragments.

• Express complex control flow involving both sequential and parallel exe-
cution.

• Reason about the interaction between tests (e.g., liveness predicates) and
program actions.

• Formulate and prove properties of parallel executions, such as non-interference
or data race freedom.

For example, we can represent a Calyx par construct as:

par { A; B } = A∥B

Where ∥ is our additional parallel composition operator. We can then use
the standard KAT operators to reason about the behavior of this parallel com-
position in the context of the larger program:

(p · (A∥B) · q)∗

This expression represents a loop where p is a test, followed by the parallel
execution of A and B, followed by another test q. The Kleene star allows this
sequence to repeat.
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5 Proposed Solution: Concurrent Kleene Alge-
bra with Tests (CKAT)

We propose using an extended version of Kleene Algebra with Tests, which
we call Concurrent KAT (CKAT), to formalize the semantics of Calyx’s par

construct.

5.1 Key Components of CKAT

• Standard KAT operators: +, ·, ∗, 0, 1

• Parallel composition operator: ∥

• Atomic action predicates: [a] (represents an atomic action ’a’)

• Conflict relation: # (represents conflicting actions)

5.2 Axioms for CKAT

In addition to standard KAT axioms, we add:

a∥b = b∥a (Commutativity)

(a∥b)∥c = a∥(b∥c) (Associativity)

(a+ b)∥c = (a∥c) + (b∥c) (Distributivity)

[a]∥[b] = [a] · [b] + [b] · [a] (If a#b, Conflict resolution)

5.3 Representing Calyx Par Constructs

We can represent a Calyx par block as:

par { A; B; C } = A∥B∥C
Where A, B, and C are CKAT expressions representing the behavior of each

parallel branch.

6 Implementation in Calyx

To implement CKAT in Calyx, we need to modify several parts of the codebase:

1. Extend the control flow representation in control order.rs

2. Modify dataflow analysis in dataflow order.rs

3. Update live range analysis in live range analysis.rs

4. Adapt optimization passes in compaction analysis.rs

5. Update code generation in static schedule.rs

5



7 Benefits of CKAT Framework

The CKAT framework provides several benefits for Calyx:

• Formal semantics for parallel execution

• Precise reasoning about data races and conflicts

• Improved dataflow analysis, especially for liveness in parallel constructs

• Foundation for proving correctness of optimizations

• Ability to express and analyze complex parallel patterns

• Better preservation of parallelism during compilation

8 Example: Liveness Analysis with CKAT

Consider the following Calyx code:

F ; // wr x
par {

A; // wr x
B;
C; // rd x

}
G; // rd x

We can represent this in CKAT as:

(wrx · F ) · ((wrx ·A)∥B∥(rdx · C)) · (rdx ·G)

Using CKAT, we can define axioms that capture:

1. A write followed by a parallel composition that includes another write kills
the first write.

2. A read in any branch of a parallel composition makes the variable live for
the entire par block.

This allows us to correctly analyze that x is not live between F and the par
block, but is live within and after the par block.

9 CKAT Representation for Improved CFGs

9.1 CKAT-based Control Flow Graphs

CKAT allows us to represent parallel execution more accurately in control flow
graphs by introducing a parallel composition operator (∥) alongside the tra-
ditional sequential composition (·). This enables us to construct CFGs that
explicitly represent parallel execution paths.
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9.2 Tests in CKAT for Calyx

Tests are predicates that can be used to represent conditions or state. For our
Calyx example, we can use tests to represent the liveness of variables. Let’s
define the following tests:

• lx: Test that evaluates to true if x is live

• wx: Test that evaluates to true if x is written

• rx: Test that evaluates to true if x is read

9.3 CKAT Formula for the Example

Let’s represent our example using CKAT:

(wx · F ) · ((wx ·A)∥B∥(rx · C)) · (rx ·G)

Intuitively, this formula represents:

• wx · F : Write to x in F

• (wx ·A)∥B∥(rx ·C): Parallel execution of A (writing x), B, and C (reading
x)

• rx ·G: Read from x in G

9.4 Liveness Analysis with CKAT

To perform liveness analysis, we can define axioms in CKAT:

wx · lx = 0 (a write kills liveness)

rx ≤ lx (a read implies liveness)

(a∥b) · lx = (a · lx)∥(b · lx) (liveness distributes over parallel comp.)

Using these axioms, we can reason about liveness in our example:

(wx · F ) · ((wx ·A)∥B∥(rx · C)) · (rx ·G) · lx
= (wx · F ) · ((wx ·A · lx)∥(B · lx)∥(rx · C · lx)) · (rx ·G)

= (wx · F ) · (0∥(B · lx)∥(rx · C)) · (rx ·G)

= (wx · F ) · (B · lx∥rx · C) · (rx ·G)

= (wx · F ) · rx · C · (rx ·G)

This derivation shows that x is not live after F (due to the write), becomes
live in the par block due to the read in C, and remains live through G.
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9.5 Implementation in Calyx

To implement this CKAT-based analysis in Calyx, we would need to extend the
current CFG representation and dataflow analysis. Here’s a sketch of how this
might look in Rust:

enum CKATExpr {
Seq (Vec<CKATExpr>) ,
Par (Vec<CKATExpr>) ,
Write ( S t r ing ) , // e . g . , Write (red”redxred” )
Read ( St r ing ) , // e . g . , Read (red”redxred” )
Test ( S t r ing ) , // e . g . , Test (red”red l x red” )

}

bluestruct CKATAnalysis {
expr : CKATExpr,

}

impl CKATAnalysis {
fn a n a l y z e l i v e n e s s (& s e l f ) → HashSet<Str ing> {

bluelet mut l i v e v a r s = HashSet : : new ( ) ;
s e l f . ana lyze expr (& s e l f . expr , &mut l i v e v a r s ) ;
l i v e v a r s

}

fn ana lyze expr (& s e l f , expr : &CKATExpr, l i v e v a r s : &mut HashSet<Str ing >) {
bluematch expr {

CKATExpr : : Seq ( exprs ) ⇒ {
bluefor expr bluein exprs . i t e r ( ) . rev ( ) {

s e l f . ana lyze expr ( expr , l i v e v a r s ) ;
}

}
CKATExpr : : Par ( exprs ) ⇒ {

bluelet mut p a r l i v e = HashSet : : new ( ) ;
bluefor expr bluein exprs {

bluelet mut b ranch l i v e = l i v e v a r s . c l one ( ) ;
s e l f . ana lyze expr ( expr , &mut b ranch l i v e ) ;
p a r l i v e . extend ( b ranch l i v e ) ;

}
∗ l i v e v a r s = p a r l i v e ;

}
CKATExpr : : Write ( var ) ⇒ {

l i v e v a r s . remove ( var ) ;
}
CKATExpr : : Read ( var ) ⇒ {

l i v e v a r s . i n s e r t ( var . c l one ( ) ) ;
}
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CKATExpr : : Test ( ) ⇒ {} // Tests don ’ t a f f e c t l i v e n e s s d i r e c t l y
}

}
}

This implementation sketch shows how we might represent CKAT expres-
sions and perform liveness analysis based on these expressions. The analyze liveness

function would traverse the CKAT expression, updating the set of live variables
according to the CKAT axioms we defined earlier.

9.6 CKAT Expression Representation

enum CKATExpr {
Seq (Vec<CKATExpr>) ,
Par (Vec<CKATExpr>) ,
Write ( S t r ing ) ,
Read ( St r ing ) ,
Test ( S t r ing ) ,

}

This enum represents the core elements of CKAT:

• Seq: Represents sequential composition (· in CKAT)

• Par: Represents parallel composition (∥ in CKAT)

• Write and Read: Represent atomic actions

• Test: Represents tests in CKAT

These constructs allow us to build expressions that mirror the structure of
Calyx programs, including parallel constructs.

9.7 CKAT Analysis

s t r u c t CKATAnalysis {
expr : CKATExpr,

}

impl CKATAnalysis {
fn a n a l y z e l i v e n e s s (& s e l f ) −> HashSet<Str ing> {

l e t mut l i v e v a r s = HashSet : : new ( ) ;
s e l f . ana lyze expr (& s e l f . expr , &mut l i v e v a r s ) ;
l i v e v a r s

}
// . . .

}
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This structure encapsulates a CKAT expression and provides methods to
analyze it. The analyze liveness function performs a liveness analysis on the
CKAT expression, which relates to how we use CKAT to reason about program
properties.

9.8 Expression Analysis

fn ana lyze expr (& s e l f , expr : &CKATExpr, l i v e v a r s : &mut HashSet<Str ing >) {
match expr {

CKATExpr : : Seq ( exprs ) => {
f o r expr in exprs . i t e r ( ) . rev ( ) {

s e l f . ana lyze expr ( expr , l i v e v a r s ) ;
}

} ,
CKATExpr : : Par ( exprs ) => {

l e t mut p a r l i v e = HashSet : : new ( ) ;
f o r expr in exprs {

l e t mut b ranch l i v e = l i v e v a r s . c l one ( ) ;
s e l f . ana lyze expr ( expr , &mut b ranch l i v e ) ;
p a r l i v e . extend ( b ranch l i v e ) ;

}
∗ l i v e v a r s = p a r l i v e ;

} ,
CKATExpr : : Write ( var ) => {

l i v e v a r s . remove ( var ) ;
} ,
CKATExpr : : Read ( var ) => {

l i v e v a r s . i n s e r t ( var . c l one ( ) ) ;
} ,
CKATExpr : : Test ( ) => {}

}
}

This function is where the CKAT theory is applied in practice:

• Sequential Composition: For Seq, we analyze expressions in reverse
order, mimicking how liveness propagates backwards in a program. This
corresponds to the CKAT axiom a · b · lx = a · (b · lx).

• Parallel Composition: For Par, we analyze each branch independently
and then combine the results. This relates to the CKAT axiom (a∥b) · lx =
(a · lx)∥(b · lx).

• Write: A write operation removes a variable from the live set, corre-
sponding to the CKAT axiom wx · lx = 0.

• Read: A read operation adds a variable to the live set, corresponding to
the CKAT axiom rx ≤ lx.
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• Test: Tests don’t directly affect liveness in this simple model, but in a
more complex analysis, they could be used to represent conditions that
affect liveness.

9.9 Connecting Theory to Implementation

The implementation translates CKAT concepts into practical analysis:

1. Algebraic Structure: The CKATExpr enum mirrors the algebraic struc-
ture of CKAT, allowing us to represent complex programs with both se-
quential and parallel composition.

2. Compositional Analysis: The recursive nature of analyze expr re-
flects the compositional nature of CKAT, where properties of complex
expressions are derived from properties of their components.

3. Parallel Semantics: The handling of Par expressions captures the essence
of how CKAT deals with parallel composition, considering all possible in-
terleavings implicitly.

4. Action Semantics: The treatment of Read and Write operations cor-
responds to how CKAT axioms describe the effect of these actions on
liveness.

9.10 Limitations and Future Enhancements

While this implementation captures the essence of CKAT-based analysis, it has
limitations:

• It doesn’t fully capture the algebraic laws of CKAT, such as distributivity
or associativity.

• The handling of tests is simplistic and could be extended to incorporate
more complex boolean algebra.

• It doesn’t include mechanisms for proving program equivalence or applying
CKAT-based optimizations.

Future enhancements could include:

• Implementing a full CKAT algebra with all operators and laws.

• Extending the analysis to handle more complex properties beyond simple
liveness.

• Incorporating techniques for program equivalence proofs and optimiza-
tions based on CKAT axioms.
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