
Isosurface Mesh Extraction from Signed Distance Fields

Jakub Nawrocki*
TU Wien

Philipp Erler†

TU Wien

Abstract

The problem of extracting explicit mesh representations from
signed distance functions has a long history in Computer Graph-
ics, with the first algorithm, Marching Cubes, being published as
early as 1987. It finds application in many areas such as medicine,
modelling and physical simulations, where its main application is
either aiding visualization of volumetric data defined as implicit
functions or converting the implicit representations into explicit for-
mats more suitable for the task. Another prominent application of
mesh extraction, is its application in differentiable mesh optimiza-
tion problems which are commonly used in generative modelling
and photogrammetry, where novel techniques are being developed
to perform optimizations directly on polygonal meshes.

In this paper we present a variety of isosurface mesh extraction
techniques that focus on extracting the explicit mesh from a signed
distance field. For the five selected methods: Marching Cubes,
Neural Dual Contouring, Deep Marching Tetrahedra, Flexicubes
and Reach for The Spheres, we perform in-depth evaluations to de-
termine the quality and performance of the extraction process. To
that end, we prepare and describe a custom dataset for evaluating
the selected techniques.

Keywords: isosurfacing, isosurface mesh extraction, signed dis-
tance field

1 Introduction

The problem of Isosurface Mesh Extraction refers to computing an
explicit polygonal mesh from a given Signed Distance Field(SDF)
and a chosen distance value(usually zero) which represents an iso-
surface. SDFs are an important representation of 3D objects and
find many applications in areas such as modeling, animation, sci-
entific simulation, and visualization [de Araújo et al. 2015]. They
are also suitable for representing volume data such as scans ob-
tained from computer tomography and magnetic resonance imaging
[de Araújo et al. 2015]. They are however, hard to visualize, requir-
ing costly algorithms such as ray tracing or particle-based methods
[de Araújo et al. 2015]. On the other hard, polygonal meshes are
a widely adopted representation in Computer Graphics. They are
much cheaper to visualize but can only approximate a continous
SDF. This tradeoff between speed and accuracy is often acceptable
for many applications and therefore, a large number of methods
have been developed to convert SDFs into polygonal meshes, with
Marching Cubes [Lorensen and Cline 1987], one of the earliest pro-
posed algorithms, being published in 1987.

With the recent advances in Machine Learning and Neural Net-
works, SDFs have become an even more important topic, as they

*email: e12231223@student.tuwien.ac.at
†email: perler@cg.tuwien.ac.at

lend themselves much better to gradient-based optimization prob-
lems than explicit represntations. Some examples of applications
include: photogrammetry, generative modelling and physics sim-
ulations [Shen et al. 2023]. However, the problem of visualiz-
ing SDFs and using them in downstream applications remains and
SDFs are often used as an intermediate step, before being converted
to polygonal meshes. This has sparked recent developments in Iso-
surface Mesh Extraction methods which aim to make the extraction
process differentiable and thus allowing to optimize downstream
tasks directly on the extracted meshes [Shen et al. 2021] [Shen et al.
2023].

In this paper, we only consider isosurface mesh extraction from
SDFs, not the general problem of 3D reconstruction which can
use different input representations such as points clouds [Kazhdan
2005] [Kazhdan and Hoppe 2013] to produce explicit representa-
tions.

We aim to present and evaluate the following Mesh Extraction
methods:

• Marching Cubes

• Neural Dual Contouring

• Deep Marching Tetrahedra

• Flexicubes

• Reach for The Spheres

Marching Cubes is one of the earliest and most popular extraction
methods. This makes it a good baseline for comparisons with more
advanced techniques. Neural Dual Contouring [Chen et al. 2022] is
the most recent technique using the Dual Contouring [Ju et al. 2002]
approach. Deep Marching Tetrahedra [Shen et al. 2021] and Flexi-
cubes [Shen et al. 2023] are chosen to demonstrate the latest meth-
ods in the Gradient-Based Mesh Optimization problem. Finally,
Reach for Three Spheres [Sellán et al. 2023] is a recent method
which takes a largely different approach, by iteratively fitting an
initial mesh of the same topology, to the target mesh defined by a
Signed Distance Field. The choice of methods is limited by source
code availability, however we aim to focus on the most recent and
novel techniques in their respective categories, with the exception
of Marching Cubes.

Throughout this paper, we first present the evaluated methods, as
well as their predecessors and other related techniques. Next, we
discuss the structure and composition of the dataset used in the
benchmarking process. Then, we explain the techniques used to
evaluate the extraction process, which focus on three aspects: per-
formance, accuracy of mesh extraction in respect to the ground truth
mesh and quality of the extracted mesh, irrespective of the ground
truth mesh. Finally, we present and discuss the obtained.

2 Mesh Extraction Methods

This list is not exhaustive, however we include all methods rele-
vant to the benchmarked techniques or otherwise important to the
problem of isosurface mesh extraction.

2.1 Spatial Subdivision Methods

According to the categorization of isosurface extraction methods by
[de Araújo et al. 2015], the following algorithms belong to spatial
subdivision methods. These algorithms work by subdividing the
space over which the SDF is defined and approximating the isosur-
face locally.

2.1.1 Marching Cubes

The first and most known representative of this class of methods is
the original Marching Cubes algorithm [Lorensen and Cline 1987].
It works by subdividing the SDF space into a uniform grid of cubes.
Each cube is the processed independently, by first sampling the SDF
at the corners of the cube. Only the sign of the SDF at the corners is
important, as it determines whether the point is inside or outside of
the volume defined by the isosurface. The key idea of the March-
ing Cubes method is defining a unique triangulation of the approx-
imated surface inside the cube, based on the signs of the SDF at
the corners of the cube. Since there are eight corners and their sign
can be either positive or negative, there are 28 = 256 different pos-
sible combinations which requires 256 unique triangulations of the
surface inside the cube. These triangulations are prepared in such
a way that the vertices on neighbouring faces of two cubes can be
merged to create a manifold surface. Computing the triangulation
inside every cube and joining the polygons with each neighbour,
produces the final extracted polygonal mesh. Many of the 256 cases
are symmetrical and can be therefore reduced, to 15 unique cases,
shown in Figure 1. Black dots in the corners represent a negative
SDF value (inside the volume) and the lack of a dot represents a
positive value (outside of the volume).

For the chosen triangulation, the points not lying in the corners of
the cube are positioned along the edge by computing the intersec-
tion of the SDF contour with the edge.

The original implementation suffers from ambiguities in the tri-
angulation process which can result in incorrect topology of the
extracted mesh. Various attempts have been made to resolve
these ambiguities [Nielson and Hamann 1991] [Tcherniaev 1996].
[Thomas Lewiner and Tavares 2003] provides an efficient imple-
mentation with guarantees of topological correctness.

An inherent weakness of Marching Cubes, is its inability to repre-
sent sharp and thin features, especially if their size is smaller than
the cube grid subdivision size. The rigid structure of the cube grid
and limited vertex position, reduce the detail of the features that can
be expressed.

2.1.2 Marching Tetrahedra

Marching Tetrahedra [Doi and Koide 1991] is an evolution of the
original Marching Cubes algorithm, where the space is subdivided
into tetrahedra instead of cubes. This is done by subdividing each
cube into 5 tetrahedra, as shown in Figure 2.

In the case of tetrahedra the number of possible combinations of
signs of SDF values at the corners is 24 = 16. After considering
the symmetries of this representation, the number of unique trian-
gulation cases can be reduced to three. This method is aimed at re-
moving the ambiguities present in the Marching Cubes algorith but
is not entirely successful at removing all ambiguities [Zhou et al.
1995].

The Marching Tetrahedra produces a slightly better resolution in the
extracted mesh compared to Marching Cubes when using the same
sampling resolution on the SDF. This is due to the dense packing of
the tetrahedra compared to cubes. For each 8 sampled SDF values
a cube represents 12 edges which can contain a vertex. Meanwhile

Figure 1: 15 unique triangulations of a cube. Figure 3 taken from
[Lorensen and Cline 1987]

the 5 tetrahedra contained in the same space uses the same 8 SDF
samples to provide 18 edges. Even with this small improvement,
Marching Tetrahedra suffers from the same weakness as Marching
Cubes - the inability to capture sharp and thin features.

2.1.3 Dual Contouring

Dual Contouring [Ju et al. 2002] focuses on improving reconstruc-
tion quality of sharp and thin features. Instead of using a fixed
number of triangulations for each cube, vertices are allowed to be
moved to an arbitrary point in the cube, which best matches the
countour of the object. First, in each cube which exhibits a sign
change(i.e., contains at least one corner which is different than the
others), each edge with different signs at the corners is considered.
For these edges the intersection point is found between the SDF
contour and the edge, similarly to Marching Cubes. For each inter-
section point found along the edge, the normal of the countour at
that point. In order to find the normals at intersection points, Dual
Contouring requires the input SDF to not only hold a scalar value
but also the gradient at each point. Finally a vertex is generated
inside the cube, which minimizes the following expression:

E(x) = ∑
i
(ni · (x− pi))

2 (1)

After all vertices have been generated, for each edge which exhib-
ited a sign change, the generated vertices from the four cubes sur-
rounding that edge are connected to form a quadrilateral. The au-
thors further extend the above formulation to work with octrees by

Figure 2: Subdivision of a cube into 5 tetrahedra. Fig. 3 taken from
[Bagley et al. 2016]

expanding only the leaf cubes which are not homogenous in sign
values at the corners. Since in the average case, most cubes in a
fixed grid are homogenous, this saves a lot of computation time
and memory, as well as, allows for very detailed feature extraction
along the contour.

The name Dual Contouring comes from the fact that the extracted
mesh is dual to the original cube grid. Each cube in the original
grid corresponds to a vertex in the extracted mesh and each edge
corresponds to a quadrilateral face in the extracted mesh.

Figure 3 compares the effect of Marching Cubes and Dual Contour-
ing on a simple 2D example. The sharp feature in the upper right
quadrant is correctly extracted by Dual Contouring, while March-
ing Cubes produces smooth approximation, not representative of
the real contour.

Figure 3: Comparison of extraction from computed intersection
points(left), using Marching Cubes(center) and Dual Contour-
ing(right). Figure adapted from Fig. 2 in [Ju et al. 2002]

The ability to reposition verticies inside the cube cells also gener-
ates high quality triangles with low aspect ratios. This is thanks
to the quadratic optimization function, which tries to minimize the
angles in the extracted polygons.

The main drawback of this method is that it requires a lot of extra
data in the input SDF, in the form of gradients/surface normals at
each sampled point.

2.1.4 Neural Dual Contouring

(find 2023 better recent paper) Neural Dual Contouring [Chen et al.
2022] aims to improve the main drawback of Dual Contouring,
which is its dependency on access to the gradient of the SDF. In-
stead of calculating the positions of vertices in the heterogenous
cubes, uses a trained neural network to directly predict them from
SDF signs at the corners.

Furthermore, the authors introduce another variant of their net-
work which predicts vertices based on a boolean flag for each edge,
which determines if it intersects the SDF contour. Since this model
does not rely on the signs of the SDF, it is called Unsigned Neural
Dual Contouring.

Additionally, the authors show that both the SDF signs at corners
and the boolean edge flags, can be predicted by a separate neural
networks. These networks can be trained to use a wide range of
data as input, such as: SDFs, Grids of Binary Voxels, Unsigned
SDFs and Point clouds [Chen et al. 2022].

Figure 4 shows a simple outline of both regular and Unsigned Neu-
ral Dual Contouring.

Figure 4: Outline of Neural Dual Contouring(top row) and Un-
signed Neural Dual Contouring(bottom row). Figure adapted from
[Chen et al. 2022]

2.1.5 Neural Marching Cubes (Maybe remove?)

2.1.6 Dual Marching Cubes

The Dual Marching Cubes [Schaefer and Warren 2004] algorithm
is, to some extent, a combination of Dual Contouring and Marching
Cubes. The general goal of this technique is to perform Marching
Cubes on a grid that is aligned to the sharp features in the SDF,
instead of a uniform grid, which would miss sharp features.

The first step of the algorithm, defines an octree over the whole
extraction space and subdivides it adaptively. The subdivision pro-
cess is controlled by a quadratic error term which judges if a given
point lies on a feature of the SDF. By minimizing this error over
some amount of SDF samples, the most important feature point in
the sample area can be found. Each cell of the quadtree is sampled
using this strategy and a minimal error is obtained. If this error is
greater than some tolerance ε , the cell is subdivided and the process
is repeated recursively on the new leaf cells.

After computing the octree, each cell is once again sampled using
the quadratic feature error function to find the vertex in each cell,
which is most likely an important feature. These vertices are anal-
ogous to the dual vertices obtained when using Dual Contouring.
Another posible way of positioning the vertices in each cell is us-
ing the centroids of faces in the original grid.

In order to find the connectivity of the new dual grid with the found
vertices, a recursive traversal of the octree is performed. Figure 5
illustrates an example original and dual grid overlayed in 2D.

Figure 5: Example original quadtree(blue) and its dual grid(black)
overlayed. Figure taken from [Schaefer and Warren 2004]

In the final step an extended Marching Cubes variant is used to ex-
tract the final mesh from the dual grid. The extension allows March-
ing Cubes to run on cube grids with arbitraty vertex positions. Note
however, that the dual grid has the same topology as the original
octree grid.

This formulation has many desirable properties. The vertices of the
dual grid which are given to Marching Cubes are aligned with the
sharp features in the SDF, which enhances their extraction. The
adaptive octree, allows for small details to be extracted without
large subdivisions of the uniform grid. The extracted meshes are
guaranteed to be manifold.

2.2 Gradient-Based Mesh Optimization Methods

This set of methods still belongs to the Spatial Subdivision cate-
gory. However, these methods have been developed to address the
problem of Mesh Optimization. As stated before, SDFs have be-
come a popular representation for many gadient-based techniques,
thanks to their constant encoding size and intuitive differentiation.
A typical architecture in downstream applications, such as genera-
tive modelling, will predict an SDF from vaious types of input data,
using a deep neural network. Differentiable Isosurface Mesh Ex-
traction techniques aim to extend the mesh optimization problem
beyond the SDF and allow loss to be defined directly on the polyg-
onal meshes.

This category of algorithms is not directly comparable with the
non-differentiable ones, as the problem definition of mesh opti-

mization is dfferent to mesh extraction. In fact, both of the tech-
niques presented below use Marching Cubes based algorithms with
minor modifications in the extraction step. However, by adjusting
the optimization targets, a fair comparison can be made to evaluate
the quality of the extraction performed by both differentiable and
non-differentiable methods [Shen et al. 2023]. The details of this
comparison is discussed in a later section of this paper.

2.2.1 Deep Marching Tetrahedra

Deep Marching Tetrahedra [Shen et al. 2021] is a generative model
which predicts explicit surface representations, using point clouds
or coarse voxelized shapes. The discrete SDF serves as the inter-
mediate representation in the optimization process and is extracted
into a polygonal mesh using a differentiable marching tetrahedra
layer in the network.

The architecture is split up into a Generator and Discriminator, who
perform their usual functions in a generative adversarial network.

The Generator extracts the final explicit mesh. First the input data is
encoded into 3-dimensional feature vectors. Based on these vectors
an initial SDF is predicted. The algorithm performs many small op-
timizations at the SDF stage to increase the quality and performance
of the network. One such improvement is using a deformable tetra-
hedral grid [Gao et al. 2020]. During iteration, before the explicit
mesh is extracted, the tetrahedral grid is refined and subdivided
along the contour of the surface. This improves the quality of the
extraction, similar to the adaptive subdivision found in Dual March-
ing Cubes. The refining process also shifts the grid vertices and
modifies their SDF values. This deformations improve the ability
of Marching Tetrahedra to extract sarp features. The resulting SDF
is then used to extract the ploygonal mesh. Before evaluating the
loss function, additional subdivision and refinement is performed,
using Loop Subdivisio and prediciting offsets for the vertices of the
extracted mesh. All SDF and vertex offsets and subdivision param-
eters are learnable parameters of the network.

The Discriminator is a 3-dimensional convolutional neural network
which runs on the ”ground truth” SDF computed from the extracted
mesh and the input feature vector. It predicts the probability, that
the SDF came from a real mesh.

The Loss function contains three factors. Surface Alignment Loss is
calculated by sampling a set of point from the predicted and ground
truth mesh. The loss is calcualted as the Chamfer Distance and
Normal Consistency Loss between the two point sets. Adversarial
loss is used to drive the GAN network. Finally a Regularization loss
is added to control SDF values which are not part of the tetrahedra
on the countour of the extracted object, as the losses for those points
do not get propagated backwards from the extracted mesh. The final
loss is a weighted sum of all loss components.

2.2.2 Flexicubes

Flexicubes [Shen et al. 2023] is a recent method, which extends
Dual Marching Cubes to define a differentiable mesh optimization
technique. Just as in Deep Marching Tetrahedra, the SDF is the in-
termediate representation from which the explicit mesh is extracted.

The Dual Marching Cubes extraction used in Flexicubes paper con-
siders the centroid of original grid faces as a way to position the
dual vertices. The authors remark that on its own this technique
hinders the ability of the extraction process to capture sharp fea-
tures, as it limits the available positions for the vertices. In order to
improve the the extraction quality, three additional sets of learnable
parameters are chosen.

The first set of parameters are Interpolation Weights used to posi-
tion the dual vertices in the original cell of the octree. Each grid
cell is ammended with eight positive α-weights and twelve positive
β -weights. The α-weights interpolate the position of the intersec-
tion of the mesh isosurface along each of the eight edges of the
cube. The β -weights interpolate the placement of the dual vertex in
respect to the edges of the octree cell.

The second set of parameters γ is used, per cell, to control how
quadrilaterals are split into triangles after extraction. Since Dual
Marching Cubes produces quadrilateral faces, which are not nec-
essarily planar, slpitting the quadrilateral along the wrong diagonal
can lead to artifacts. In order to train the model to avoid splitting
along the wrong diagonal, a midpoint is inserted into each of the
extracted quadrilaterals during optimization. The coordinates are
interpolated between the four vertices of the resulting quadrilat-
eral, controlled by γ . During the final extraction step, no midpoint
is added. Instead the quadrilateral face is split along the diagonal
which has a larger product of γ values from their respective cells.

The third set of parameters is similar to the grid offsets introduced
in Deep Marching Tetrahedra. Each vertex in the SDF grid is as-
signed a parameter δ , which describes the offset of the grid vertex
in space.

Flexicubes can be optimized using auto-differentiation using the
provided parameters. It can be flexibly fittied as a differentiable
mesh extraction technique into various mesh optimization prob-
lems.

2.3 Reach For The Spheres

Reach for The Spheres [Sellán et al. 2023] is a representative of
the shrink-wrapping techniques, categorized by [de Araújo et al.
2015]. This method fits a starting mesh to the SDF by observing
that the isosurface can be defined as being tangent to all spheres
placed around points in the SDF with radius equal to the size of ab-
solute value of the SDF at that point. The authors define an energy
minimization problem using the SDF Energy term:

Eφ (Ω) =
1
2

n

∑
i=1

(φ(pi,Ω)− si)
2 (2)

where Ω is the surface that is being minimized, pi is a sample point,
φ(pi,Ω) is the value of the minimized surface Ω at pi and si is the
value of the ground truth isosurface at pi.

Starting at some chosen surface, it is iteratively fitted towards the
discrete, ground truth SDF using the gradient flow of the SDF En-
ergy term.

Since this method does not modify the topology of the initial mesh
during the initial optimization process, the genus of the initial sur-
face and the target isosurface must match. One way to circumvent
this limitation, suggested by the authors, is to first use a genus in-
variant algorithm such as Marching Cubes to get a rough mesh of
the correct genus and then apply Reach for The Spheres.

According to the authors the iterative optimization process quickly
introduces ”degeneracies, flipped and thin triangles, and self-
intersections”[Sellán et al. 2023]. In order to avoid this behaviour,
the optimized mesh is re-meshed after each iteration, with a target
edge length.

3 Benchmarking

3.1 Method

The testing of the selected extraction methods is divided into two
categories, following the example of [Shen et al. 2023]. The first
category includes non-differentiable methods: Marching Cubes,
Neural Dual Contouring and Reach for The Spheres. These meth-
ods extract the explicit mesh representation from a fixed SDF. For
each model in the prepared dataset, we calculate the SDF using
pysdf1. Then all three methods are run on the resulting SDF to pro-
duce the extracted mesh. The original mesh in the dataset is used
as the ground truth.

As mentioned before, we use the optimized version of the March-
ing Cubes algorithm [Thomas Lewiner and Tavares 2003] which is
available in the scikit-image2 python package.

The Dual Neural Contouring implementation is taken from the au-
thors github repository3. We use pre-trained weights provided by
the authors of the paper, available in the repository.

The Reach for The Spheres implementation is available as part of
the gpytoolbox4 python package.

The second category includes both differentiable methods: Deep
Marching Tetrahedra and Flexicubes. Since the SDF in these tech-
niques is learned by the neural network, rather than fixed, the au-
thors of the Flexicubes paper suggest a different setup to test the
extraction process. The loss function is defined directly using the
ground truth mesh. Each iteration the depth and silhouette images
are rendered using a differentiable renderer from a randomly sam-
pled camera pose for the extracted and ground truth mesh. The loss
is calculated from the differences between these images. Addition-
ally, SDF loss is computed to minimize the differences between the
predicted and ground truth SDF, by sampling 1000 points on the
surface of the extracted mesh and computing their SDF value in the
original mesh.

For the Flexicubes implementation, we directly use the code pro-
vided in the github repository5 linked in the paper, using the setup
described above.

The Deep Marching Tetrahedra implementation is also taken from
NVIDIAs Kaolin github repository6. we replicate the same setup
for the loss function based on the ground truth mesh.

3.2 Dataset Preparation

The dataset used to evaluate the extraction methods is prepared
manually, using models found in Thingi10K [Zhou and Jacobson
2016], which is a collection of 3D models catalogued by various
properties, such as water-tightness, self-intersections, genus and
many others. The whole dataset is divided into subsets of models
based on their properties, which allows me to test individual fea-
tures of the Mesh Extraction methods individually. These models
serve as the ground truth for the extraction process.

The first part of the dataset is constructed to measure how the tech-
niques behave on ground truth meshes of different resolution. It
consists of three sets of 100 models each. First, 100 models are
downloaded from Thingy10K, using the querry in Appendix A.1,
with the following features:

1https://github.com/sxyu/sdf
2https://scikit-image.org/
3https://github.com/czq142857/NDC
4https://gpytoolbox.org/0.2.0/reach for the spheres/
5https://github.com/nv-tlabs/FlexiCubes
6https://github.com/NVIDIAGameWorks/kaolin/

• Water-tight

• No self-intersections

• number of faces >20.000

Each of these high polygon models is decimated three times to pro-
duce three sets of 100 models with a face count of approx. 20.000,
2.000 and 200 faces. Together these three sets contain 3 levels of
detail of each of the original meshes. The lower detail geometry is
generated using the meshing decimation quadric edge collapse
filter from the pymeshlab7 library.

The second part of the dataset aims to find the effect of self-
intersections on the extracted mesh. This part consists of two sets of
100 models, one with and one without self-intersections. We obtain
the sets from Thingi10K, using the querry in Appendix A.2, with
the following properties:

• Water-tight

• With self-intersections for first set, without for the second set

• number of vertices >1.000

Here the level of detail is not as important, as long as it is high
enough to produce interesting features.

The third part of the dataset is used to measure the effect the effect
of thin and sharp features on the extraction quality. It consists of
two sets of 100 models, one with and one without thin and sharp
features. Once again, we obtain the sets from Thingi10K, using the
querry in Appendix A.3, with the following properties:

• Water-tight

• With thin and sharp features for first set, without for the sec-
ond set

• number of vertices >1.000

Each dataset element is additionally normalised before any com-
putation. The meshes are centered at the origin and scaled, so the
longest side of the axis-aligned bounding box of each mesh ranges
from [-1, 1].

3.3 Evaluation Techniques

3.3.1 Performance

In order to measure the performance of each method, we record the
running time of the extraction process.

3.3.2 Accuracy of extraction compared to ground truth
mesh

This set of metrics is used to measure how well the extracted mesh
matches the ground truth mesh. In order to define the accuracy
metrics, we randomly sample 100.000 points on the surface of both
meshes to create two point clouds. Using these two point clouds,
we calculate the first two metrics:

• Chamfer Distance

The Chamfer Distance is calculated by taking the average of
the squared distances from each point in one point cloud to
the nearest point in the other point cloud. This is done for
both point clouds and the averages are summed. The Chamfer
Distance can be written as:

7https://github.com/cnr-isti-vclab/PyMeshLab

w1

|P1| ∑
p1i∈P1

min
p2 j∈P2

(||p1i− p2 j||22)+
w2

|P2| ∑
p2 j∈P2

min
p1i∈P1

(||p2 j− p1i||22)

(3)

where P1 is the extracted mesh point cloud and P2 is the
ground truth point cloud. w1 and w2 are used to weight the
influence of each point clouds but are set to the default value
of 1.

• F1-Score

The F1-score is defined as the harmonic mean of precision and
recall. Precision is calculated by considering each point in the
extracted mesh point cloud. If the distance to the nearest point
in the ground truth point cloud is smaller than a threshold =
0.01, it is counted as a true positive. If no ground truth point
is found within the threshold distance, it is counted as a false
positive. Recall is similarly calculated by considering each
point in the ground truth point cloud. If the distance to the
nearest point in the extracted mesh point cloud is smaller then
the threshold, it is counted as a true positive. If no point is
found it is counted as a false negative.

We calculate both Chamfer Distance and F1-Score using the Kaolin
point cloud metrics module8.

The next pair of metrics requires computing the edge set of both the
extracted and grount truth point clouds. The edge set is a subset of
the original point clouds which only includes points close to sharp
features of the mesh. When sampling the original point clouds, for
each point we also store the normal of the face which this point be-
longs to. Then for each point in one point cloud, we find all points
within a distance threshold = 0.1. We calcualte the dot product be-
tween the point’s normal and each of it’s neighbour. If the minimum
absolute value of the dot product is below the normal threshold =
0.2 this point is added to the edge set. This operation is performed
separately for the ground truth and extracted point cloud. Having
both edge set point clouds, we once again calculate:

• Edge Chamfer Distance

• Edge F1-Score

which are defined in the same way as the regular Chamfer Distance
and F1-Score, except on the edge set point clouds.

The final extraction accuracy metric is Normal Inaccuracy. It is
defined as the mean squared error between normals of each point in
the extracted point cloud and nearest neighbout in the ground truth
point cloud.

3.3.3 Quality of extracted mesh

In order to judge the quality of the extracted mesh, we use the fol-
lowing metrics:

• Triangle Aspect Ratios

Triangle Aspect Ratio is defined as the ratio of the circum-
radius to twice its inradius. The final formula is defined as
follows:

s =
a+b+ c

2

AspectRatio =
abc

8(s−a)(s−b)(s− c)

(4)

8https://kaolin.readthedocs.io/en/latest/modules/kaolin.metrics.pointcloud.html

Sliver triangles will result in a very high aspect ratio while
regular triangles with sides of similar length will produce an
aspecet ratio near 1. We report the average aspect ratio across
all triangles in the extracted mesh.

• Percentage of Sliver Triangles

Percentage of Sliver Triangles measures the ratio of sliver tri-
angles to the total number of triangles in the extracted mesh.
A sliver triangle is defined as having an angle <10°.

4 Results

5 Conclusion

References

BAGLEY, B., SASTRY, S. P., AND WHITAKER, R. T. 2016. A
marching-tetrahedra algorithm for feature-preserving meshing
of piecewise-smooth implicit surfaces. Procedia engineering
163, 162–174.

CHEN, Z., TAGLIASACCHI, A., FUNKHOUSER, T., AND ZHANG,
H. 2022. Neural dual contouring. ACM Transactions on Graph-
ics 41, 4 (July), 1–13.

DE ARAÚJO, B. R., LOPES, D. S., JEPP, P., JORGE, J. A., AND
WYVILL, B. 2015. A survey on implicit surface polygonization.
ACM Comput. Surv. 47, 4 (may).

DOI, A., AND KOIDE, A. 1991. An efficient method of trian-
gulating equi-valued surfaces by using tetrahedral cells. IEICE
TRANSACTIONS on Information and Systems 74, 1, 214–224.

GAO, J., CHEN, W., XIANG, T., JACOBSON, A., MCGUIRE, M.,
AND FIDLER, S. 2020. Learning deformable tetrahedral meshes
for 3d reconstruction. Advances In Neural Information Process-
ing Systems 33, 9936–9947.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002.
Dual contouring of hermite data. In Proceedings of the 29th
annual conference on Computer graphics and interactive tech-
niques, 339–346.

KAZHDAN, M., AND HOPPE, H. 2013. Screened poisson surface
reconstruction. ACM Transactions on Graphics (ToG) 32, 3, 1–
13.

KAZHDAN, M. 2005. Reconstruction of Solid Models from Ori-
ented Point Sets. In Eurographics Symposium on Geometry Pro-
cessing 2005, The Eurographics Association, M. Desbrun and
H. Pottmann, Eds.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 4 (aug), 163–169.

NIELSON, G., AND HAMANN, B. 1991. The asymptotic decider:
resolving the ambiguity in marching cubes. In Proceeding Visu-
alization ’91, 83–91.

SCHAEFER, S., AND WARREN, J. 2004. Dual marching cubes:
Primal contouring of dual grids. In 12th Pacific Conference on
Computer Graphics and Applications, 2004. PG 2004. Proceed-
ings., IEEE, 70–76.

SELLÁN, S., BATTY, C., AND STEIN, O., 2023. Reach for the
spheres: Tangency-aware surface reconstruction of sdfs.

SHEN, T., GAO, J., YIN, K., LIU, M.-Y., AND FIDLER, S.,
2021. Deep marching tetrahedra: a hybrid representation for
high-resolution 3d shape synthesis.

SHEN, T., MUNKBERG, J., HASSELGREN, J., YIN, K., WANG,
Z., CHEN, W., GOJCIC, Z., FIDLER, S., SHARP, N., AND
GAO, J. 2023. Flexible isosurface extraction for gradient-based
mesh optimization. ACM Transactions on Graphics 42, 4 (jul),
1–16.

TCHERNIAEV, E. 1996. Marching cubes 33: Construction of topo-
logically correct isosurfaces.

THOMAS LEWINER, HÉLIO LOPES, A. W. V., AND TAVARES, G.
2003. Efficient implementation of marching cubes’ cases with
topological guarantees. Journal of Graphics Tools 8, 2, 1–15.

ZHOU, Q., AND JACOBSON, A. 2016. Thingi10k: A dataset of
10,000 3d-printing models. arXiv preprint arXiv:1605.04797.

ZHOU, Y., CHEN, W., AND TANG, Z. 1995. An elaborate ambi-
guity detection method for constructing isosurfaces within tetra-
hedral meshes. Computers & Graphics 19, 3, 355–364.

