Skip to content

Latest commit

 

History

History
403 lines (299 loc) · 26.6 KB

README_CN.md

File metadata and controls

403 lines (299 loc) · 26.6 KB

English | 简体中文

Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

孔令东1,2,*   刘有权1,3,*   李鑫1,4,*   陈润楠1,5   张文蔚1,6
任嘉玮6   潘亮6   陈恺1   刘子纬6
1上海人工智能实验室   2新加坡国立大学   3不来梅哈芬应用技术大学   4华东师范大学
5香港大学   6南洋理工大学S-Lab

项目概览

Robo3D 是一个详实的鲁棒性评测套件,旨在于自动驾驶场景中实现稳健且可靠的3D感知。 基于此套件,我们探究了3D检测器和3D分割器在分布外 (OoD) 场景下对于真实环境中发生的数据"损坏"条件下的鲁棒性。 具体地,我们共考虑了以下几种可能发生数据"损坏"的情形:

  1. 恶劣天气情况, 例如 雾天, 潮湿地面, 以及 雪天;
  2. 外界干扰情况, 例如 运动模糊 和 激光雷达 射线丢失;
  3. 内部传感器损坏, 例如 交扰, 非完整回声, 以及 跨传感器 情形.
干净 雾天 潮湿地面
雪天 运动模糊 射线丢失
交扰 非完整回声 跨传感器

请参阅我们的项目主页以获取更多细节与例子. 🚘

版本更新

  • [2023.07] - Robo3D 被收录于 ICCV 2023! 🎉
  • [2023.03] - 我们在 Paper-with-Code 平台搭建了如下 "鲁棒3D感知" 基线: 1KITTI-C, 2SemanticKITTI-C, 3nuScenes-C, and 4WOD-C. 现在就加入鲁棒性评测吧! 🙋
  • [2023.03] - KITTI-C, SemanticKITTI-C 以及 nuScenes-C 数据集可以在 OpenDataLab 平台上下载. 请参阅 这份 项目文档以了解更多有关数据准备的细节. 🍻
  • [2023.01] - Robo3D 基线现已上线. 在这个初步版本中, 我们测试了 12 种3D检测器和 22 种3D分割器在 4 个大规模自动驾驶感知数据集 (KITTI, SemanticKITTI, nuScenes 以及 Waymo Open) 上的 8 种"损坏"条件下的鲁棒性.

大纲

分类

雾天 潮湿地面 雪天 运动模糊
射线丢失 交扰 非完整回声 跨传感器

视频演示

Demo 1 Demo 2 Demo 3
链接 ⤴️ 链接 ⤴️ 链接 ⤴️

安装

For details related to installation, kindly refer to 安装.md.

数据准备

Our datasets are hosted by OpenDataLab.


OpenDataLab is a pioneering open data platform for the large AI model era, making datasets accessible. By using OpenDataLab, researchers can obtain free formatted datasets in various fields.

Kindly refer to 数据准备.md for the details to prepare the 1KITTI, 2KITTI-C, 3SemanticKITTI, 4SemanticKITTI-C, 5nuScenes, 6nuScenes-C, 7WOD, and 8WOD-C datasets.

开始实验

To learn more usage about this codebase, kindly refer to 开始实验.md.

模型库

 LiDAR语义分割
 LiDAR全景分割
 3D物体检测

鲁棒性基线

LiDAR语义分割

The mean Intersection-over-Union (mIoU) is consistently used as the main indicator for evaluating model performance in our LiDAR semantic segmentation benchmark. The following two metrics are adopted to compare between models' robustness:

  • mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
  • mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.

🚗  SemanticKITTI-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
SqueezeSeg 164.87 66.81 31.61 18.85 27.30 22.70 17.93 25.01 21.65 27.66 7.85
SqueezeSegV2 152.45 65.29 41.28 25.64 35.02 27.75 22.75 32.19 26.68 33.80 11.78
RangeNet21 136.33 73.42 47.15 31.04 40.88 37.43 31.16 38.16 37.98 41.54 18.76
RangeNet53 130.66 73.59 50.29 36.33 43.07 40.02 30.10 40.80 46.08 42.67 16.98
SalsaNext 116.14 80.51 55.80 34.89 48.44 45.55 47.93 49.63 40.21 48.03 44.72
FIDNet34 113.81 76.99 58.80 43.66 51.63 49.68 40.38 49.32 49.46 48.17 29.85
CENet34 103.41 81.29 62.55 42.70 57.34 53.64 52.71 55.78 45.37 53.40 45.84
KPConv 99.54 82.90 62.17 54.46 57.70 54.15 25.70 57.35 53.38 55.64 53.91
PIDSNAS1.25x 104.13 77.94 63.25 47.90 54.48 48.86 22.97 54.93 56.70 55.81 52.72
PIDSNAS2.0x 101.20 78.42 64.55 51.19 55.97 51.11 22.49 56.95 57.41 55.55 54.27
WaffleIron 109.54 72.18 66.04 45.52 58.55 49.30 33.02 59.28 22.48 58.55 54.62
PolarNet 118.56 74.98 58.17 38.74 50.73 49.42 41.77 54.10 25.79 48.96 39.44
MinkUNet18 100.00 81.90 62.76 55.87 53.99 53.28 32.92 56.32 58.34 54.43 46.05
MinkUNet34 100.61 80.22 63.78 53.54 54.27 50.17 33.80 57.35 58.38 54.88 46.95
Cylinder3DSPC 103.25 80.08 63.42 37.10 57.45 46.94 52.45 57.64 55.98 52.51 46.22
Cylinder3DTSC 103.13 83.90 61.00 37.11 53.40 45.39 58.64 56.81 53.59 54.88 49.62
SPVCNN18 100.30 82.15 62.47 55.32 53.98 51.42 34.53 56.67 58.10 54.60 45.95
SPVCNN34 99.16 82.01 63.22 56.53 53.68 52.35 34.39 56.76 59.00 54.97 47.07
RPVNet 111.74 73.86 63.75 47.64 53.54 51.13 47.29 53.51 22.64 54.79 46.17
CPGNet 107.34 81.05 61.50 37.79 57.39 51.26 59.05 60.29 18.50 56.72 57.79
2DPASS 106.14 77.50 64.61 40.46 60.68 48.53 57.80 58.78 28.46 55.84 50.01
GFNet 108.68 77.92 63.00 42.04 56.57 56.71 58.59 56.95 17.14 55.23 49.48

Note: Symbol denotes the baseline model adopted in mCE calculation.

🚙  nuScenes-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
FIDNet34 122.42 73.33 71.38 64.80 68.02 58.97 48.90 48.14 57.45 48.76 23.70
CENet34 112.79 76.04 73.28 67.01 69.87 61.64 58.31 49.97 60.89 53.31 24.78
WaffleIron 106.73 72.78 76.07 56.07 73.93 49.59 59.46 65.19 33.12 61.51 44.01
PolarNet 115.09 76.34 71.37 58.23 69.91 64.82 44.60 61.91 40.77 53.64 42.01
MinkUNet18 100.00 74.44 75.76 53.64 73.91 40.35 73.39 68.54 26.58 63.83 50.95
MinkUNet34 96.37 75.08 76.90 56.91 74.93 37.50 75.24 70.10 29.32 64.96 52.96
Cylinder3DSPC 111.84 72.94 76.15 59.85 72.69 58.07 42.13 64.45 44.44 60.50 42.23
Cylinder3DTSC 105.56 78.08 73.54 61.42 71.02 58.40 56.02 64.15 45.36 59.97 43.03
SPVCNN18 106.65 74.70 74.40 59.01 72.46 41.08 58.36 65.36 36.83 62.29 49.21
SPVCNN34 97.45 75.10 76.57 55.86 74.04 41.95 74.63 68.94 28.11 64.96 51.57
2DPASS 98.56 75.24 77.92 64.50 76.76 54.46 62.04 67.84 34.37 63.19 45.83
GFNet 92.55 83.31 76.79 69.59 75.52 71.83 59.43 64.47 66.78 61.86 42.30

Note: Symbol denotes the baseline model adopted in mCE calculation.

🚕  WOD-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
MinkUNet18 100.00 91.22 69.06 66.99 60.99 57.75 68.92 64.15 65.37 63.36 56.44
MinkUNet34 96.21 91.80 70.15 68.31 62.98 57.95 70.10 65.79 66.48 64.55 59.02
Cylinder3DTSC 106.02 92.39 65.93 63.09 59.40 58.43 65.72 62.08 62.99 60.34 55.27
SPVCNN18 103.60 91.60 67.35 65.13 59.12 58.10 67.24 62.41 65.46 61.79 54.30
SPVCNN34 98.72 92.04 69.01 67.10 62.41 57.57 68.92 64.67 64.70 64.14 58.63

Note: Symbol denotes the baseline model adopted in mCE calculation.

3D物体检测

The mean average precision (mAP) and nuScenes detection score (NDS) are consistently used as the main indicator for evaluating model performance in our LiDAR semantic segmentation benchmark. The following two metrics are adopted to compare between models' robustness:

  • mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
  • mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.

🚗  KITTI-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
PointPillars 110.67 74.94 66.70 45.70 66.71 35.77 47.09 52.24 60.01 54.84 37.50
SECOND 95.93 82.94 68.49 53.24 68.51 54.92 49.19 54.14 67.19 59.25 48.00
PointRCNN 91.88 83.46 70.26 56.31 71.82 50.20 51.52 56.84 65.70 62.02 54.73
PartA2Free 82.22 81.87 76.28 58.06 76.29 58.17 55.15 59.46 75.59 65.66 51.22
PartA2Anchor 88.62 80.67 73.98 56.59 73.97 51.32 55.04 56.38 71.72 63.29 49.15
PVRCNN 90.04 81.73 72.36 55.36 72.89 52.12 54.44 56.88 70.39 63.00 48.01
CenterPoint 100.00 79.73 68.70 53.10 68.71 48.56 47.94 49.88 66.00 58.90 45.12
SphereFormer - - - - - - - - - - -

Note: Symbol denotes the baseline model adopted in mCE calculation.

🚙  nuScenes-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
PointPillarsMH 102.90 77.24 43.33 33.16 42.92 29.49 38.04 33.61 34.61 30.90 25.00
SECONDMH 97.50 76.96 47.87 38.00 47.59 33.92 41.32 35.64 40.30 34.12 23.82
CenterPoint 100.00 76.68 45.99 35.01 45.41 31.23 41.79 35.16 35.22 32.53 25.78
CenterPointLR 98.74 72.49 49.72 36.39 47.34 32.81 40.54 34.47 38.11 35.50 23.16
CenterPointHR 95.80 75.26 50.31 39.55 49.77 34.73 43.21 36.21 40.98 35.09 23.38
SphereFormer - - - - - - - - - - -

Note: Symbol denotes the baseline model adopted in mCE calculation.

🚕  WOD-C

Model mCE (%) mRR (%) Clean Fog Wet Ground Snow Motion Blur Beam Missing Cross-Talk Incomplete Echo Cross-Sensor
PointPillars 127.53 81.23 50.17 31.24 49.75 46.07 34.93 43.93 39.80 43.41 36.67
SECOND 121.43 81.12 53.37 32.89 52.99 47.20 35.98 44.72 49.28 46.84 36.43
PVRCNN 104.90 82.43 61.27 37.32 61.27 60.38 42.78 49.53 59.59 54.43 38.73
CenterPoint 100.00 83.30 63.59 43.06 62.84 58.59 43.53 54.41 60.32 57.01 43.98
PVRCNN++ 91.60 84.14 67.45 45.50 67.18 62.71 47.35 57.83 64.71 60.96 47.77
SphereFormer - - - - - - - - - - -

Note: Symbol denotes the baseline model adopted in mCE calculation.

🚦 More Benchmarking Results

For more detailed experimental results and visual comparisons, please refer to RESULTS.md.

生成"损坏"数据

You can manage to create your own "Robo3D" corrpution sets on other LiDAR-based point cloud datasets using our defined corruption types! Follow the instructions listed in CREATE.md.

更新计划

  • Initial release. 🚀
  • Add scripts for creating common corruptions.
  • Add download links for corruption sets.
  • Add evaluation scripts on corruption sets.
  • Release checkpoints.
  • ...

引用

If you find this work helpful, please kindly consider citing our paper:

@article{kong2023robo3d,
  title = {Robo3D: Towards Robust and Reliable 3D Perception against Corruptions},
  author = {Kong, Lingdong and Liu, Youquan and Li, Xin and Chen, Runnan and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
  journal = {arXiv preprint arXiv:2303.17597}, 
  year = {2023},
}
@misc{kong2023robo3d_benchmark,
  title = {The Robo3D Benchmark for Robust and Reliable 3D Perception},
  author = {Kong, Lingdong and Liu, Youquan and Li, Xin and Chen, Runnan and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
  howpublished = {\url{https://github.com/ldkong1205/Robo3D}},
  year = {2023},
}

许可

Creative Commons License
This work is under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, while some specific operations in this codebase might be with other licenses. Please refer to LICENSE.md for a more careful check, if you are using our code for commercial matters.

致谢

This work is developed based on the MMDetection3D codebase.


MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

❤️ We thank Jiangmiao Pang and Tai Wang for their insightful discussions and feedback. We thank the OpenDataLab platform for hosting our datasets.